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Abstract The fluorescence intensity of salicylaldehyde phe-
nylhydrazone (L), in 1:1 (v/v) CH3OH:H2O was enhanced by
ca. 100 times with a blue shift in emission maximum, on
interaction with Pb2+ ion. No enhancement in fluorescent
intensity of L was observed on interaction with metal ions -
Na+, K+, Ca2+, Cu2+, Ni2+, Zn2+, Cd2+ and Hg2+. This signal
transduction was found to occur via photoinduced electron
transfer (PET) mechanism. A 1:1 complexation between Pb2+

and L with log β=7.86 has been proved from fluorescent and
UV/Visible spectroscopic data. The detection limit of Pb2+

was calculated to be 6.3×10−7M.
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Introduction

The design and synthesis of fluorescent probes for transition
and heavy metal ions is currently of prime importance for
both environmental and biological applications [1, 2]. While
transition metal ions play an important role in many funda-
mental physiological processes in organisms, heavy metal
ions can often have a profoundly detrimental effect upon
them. Among heavy metal ions, lead is the most abundant
and occupies the second position among the list of toxic
metals and is often encountered for contaminating the envi-
ronment due to its wider distribution in nature [3]. As one of
the major pollutants of the environment, Pb2+ toxicity is an
ongoing danger to the human health and environment par-
ticularly in children [4, 5]. Lead (II) ions affect almost every
organ and system of the human body, mainly the nervous

system. Lead toxicity causes various symptoms such as
anaemia, muscle paralysis, loss of memory, disorder of blood
and even mental retardation [6–8]. Lead also increases blood
pressure level and causes weakness in fingers, wrists and
ankles. Moreover high exposures to lead can result in severe
damage of kidneys and brain [9, 10]. Lead toxicity is mainly
triggered by various sources such as air, drinking water, soil
etc. Thus, the development of effective fluorescent probes [11,
12] for distinguishing lead ions from alkali, alkaline earth
metal and transition metal ions [13–15] is quite important
for detecting the presence of lead (II) in contaminated sources
[16] as well as in the human body.

The importance of fluorescent probes has increased con-
siderably over the past decade due to their easy use in
solutions and owing to their high sensitivity and selectivity
for trace analytes [17] and real time detection [18]. Thus, in
the past decade, considerable efforts have been made to
develop Pb2+-responsive fluorescent probes due to their
sensitivity, simplicity and adaptability to different platforms
that facilitate routine screening [19]. As most of the heavy
metals are known fluorescence quenchers, the development
of selective as well as sensitive probes based on fluorescent
enhancement for Pb2+ presents a challenge.

While a good number of fluorescent probes have been
developed for Zn2+ [20, 21] and other heavy metal ions such
as Cd2+ [22, 23], Hg2+ [24–27] etc., very few have been
reported for Pb2+. A ratiometric and selective fluorescent
probe for Pb2+ based on polypeptide scaffolds equipped
with a microenvironment-sensitive fluorophore has been
reported [28]. Lu et al. utilized catalytic DNAs as a unique
class of biosensors for Pb2+ [29]. A turn-on ratiometric
fluorescent probe for Pb2+ was described by Cao and cow-
orkers [30]. Ma et al. also reported a fluorescent probe based
on the Pb2+-catalyzed hydrolysis of phosphodiester [31]. A
new fluorescent probe for Pb2+ based on a triazolo-
thiadiazin derivative immobilized in polyvinyl chloride
membrane was also developed [32]. A pyrene-containing
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fluorescent probe with high selectivity for Pb2+ was also
reported [33]. Yoon and coworkers reported a highly selec-
tive fluorescent probe for Pb2+ [34]. An imidazole-
annelated ferrocene derivative was synthesized [35] which
was found to be a highly sensitive multichannel chemical
probe for Pb2+.

Herein, we report a fluorescent probe derived from the
condensation of salicylaldehyde and phenylhydrazine which
showed fluorescent peak at λmax value 529 nm on excitation
by 410 nm photon. A fluorescent enhancement (accompa-
nied by a blue shift) of ca. 100 times was registered by Pb2+

in 1:1 (v/v) CH3OH:H2O while other metal ions - Na+, K+,
Ca2+, Cu2+, Ni2+, Zn2+, Cd2+ and Hg2+ had no effect on the
fluorescent property of the probe. The binding ratio, binding
constant and detection limits were also determined.

Experimental

Materials and Methods

Phenylhydrazine was purchased from Loba Chemie while
salicylaldehyde was obtained from Merck. All the metal
salts (sulphate) and methanol were purchased from Merck.
All chemicals were of analytical grade and used without
further purification. The metal salts were recrystallised from
water (Millipore). Metal salt solutions (10−6M) were pre-
pared in 0.1 M phosphate buffer solution (PBS), pH7.0.
Fluorescence spectra measurements were performed in a
HITACHI FL-2500 florescence spectrophotometer using a
quartz cuvette and both the excitation and emission band
passes were set at 10.0 nm. A 4.0 μM solution of L in 1:1
(v/v) CH3OH: H2O (PBS, pH7.0) was used in all the
experiments.

UV/Visible spectra were recorded in a Shimadzu UV
1800 spectrophotometer. 1H NMR and 13C NMR spectra
were recorded in a Bruker Ultrashield 300 spectrometer. All
NMR spectra were recorded in CDCl3 at room temperature
and the chemical shift values are reported in δ values (ppm)
relative to TMS.

Electrochemical measurements were carried out in a CHI
600B Electrochemical Analyzer (USA), which consisted of
a three-electrode cell arrangement. The electrode environ-
ment consisted of a platinum disc as the working electrode,
Ag-AgCl (3 M NaCl) as the reference electrode and NaNO3

(0.1 M) as the supporting electrolyte. The working electrode
was cleaned by polishing with 0.1 μm alumina slurry using
a polishing kit (CHI), followed by sonication in distilled
water for 5 min.

Synthesis of the ligand L was carried out according to the
reported procedure [36] as follows; 0.105 mL (ca. 0.1 mol)
salicylaldehyde was dissolved in 10 mL ethanol and an
ethanolic solution of 0.100 mL (ca. 0.1 mol) phenylhydrazine

was added. The resulting mixture was stirred in a magnetic
stirrer for 30 min. The brownish yellow solid thus obtained
was filtered, washed with distilled water and allowed to dry
for carrying out the further experiments.

FTIR (KBr): 3290.56 cm−1 (νC=N), 3051.39 cm−1

(νC-H), 1269.16 cm−1, 3421.72 cm−1(νO-H), 1,570 and
1600.42 cm−1 (νC-N) and 1482.75 cm−1 (νC=C).
1HNMR (CDCl3, δ ppm, TMS): 10.88(s,1H), 7.87
(s,1H), 7.5 (s,1H), 7.31–7.24 (m,3H), 7.14–6.91
(m,6H), 4.8 (s,1H) (Scheme 1).

Results and Discussion

The metal ion sensing property of L (10−6M) towards Na+,
K+, Ca2+, Cu2+, Ni2+, Zn2+, Cd2+, Pb2+ and Hg2+ has been
investigated by fluorescence spectroscopy. Fluorescence of
L in 1:1 (v:v) CH3OH:H2O was examined employing dif-
ferent excitation wavelengths from 250 nm to 410 nm at an
interval of 10 nm in absence of any metal ions or in presence
of any one of the above metal ions. The concentration ratio
between L and the metal ion was kept at 1:1. No significant
change in fluorescent property of L was observed when no
metal ion was present. Fluorescence of L was found to
enhance sharply by ca. 100 times when Pb2+ ion was pres-
ent in the solution and the excitation wavelength was
410 nm.

Figure 1 shows the fluorescence response of L at zero
and different added concentration of Pb2+ ion (from
0.49 μM to 4.3 μM). The fluorescence titration studies of
L with Pb2+ revealed that the intensity of the fluorescent
peak at 529 nm increased gradually with the increasing
concentration of Pb2+ ion. The increase in the fluorescence
intensity on addition of Pb2+ ion at the final added concen-
tration was calculated to be ca. 100 times to the original one.
Moreover, a blue shift in the λmax value was also observed
from 529 nm to 504 nm. Inset of Fig. 1 depicts the plot of
I/Io as a function of Pb2+ ion concentration, where I is the
intensity at a given concentration of Pb2+ ion (at λmax value
504 nm) and Io is the intensity at zero concentration of Pb2+

ion (at λmax value 529 nm). The I/Io value was found to
increase linearly (R2=0.9942) up to the value of ca 100 till
the final concentration of Pb2+ became 4.3 μM and
remained constant thereafter. The concentration ratio of L
and Pb2+ ion at saturated fluorescent intensity being ca. 1:1.

Scheme 1 Structure of L
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The detection limit of L for Pb2+ was calculated to be
6.3×10−7M.

Similar fluorescence titrations were also performed with
the other metal ions Na+, K+, Ca2+, Cu2+, Ni2+, Zn2+ and
Cd2+ using 410 nm as the excitation wavelength. The results
showed that titration with these metal ions did not induce
any significant changes in the fluorescence emission spectra
of L. Addition of Zn2+, Ca2+ and Hg2+ ions caused a slight
increase of about 3 times in the fluorescence spectra of L.
However, addition of all the other metal ions triggered a
very small quenching effect in the fluorescence intensity of
L. The metal ion selectivity profile of L is depicted in Fig. 2
by a bar diagram to show the effect of diverse metal ions, at
4.3×10−6M concentration, on the fluorescent intensity of L.
The diagram clearly portrays the sensitivity and selectivity
of the probe towards Pb2+ ions.

The number of Pb2+ ions bound to L and the binding
constant was determined by plotting log[(Io-I)/(I-Imax)]

against log [Pb2+] (Fig. 3) [37], the slope and the X-axis
intercept representing the number of Pb2+ ions bound and
the log of binding constant (β) respectively. A least squares
fitting of data (R2=0.9864) yielded the slope to be 1.082,
indicating the binding of one Pb2+ ion to L and the log β
value was calculated as 7.86.

The UV/visible spectra of L, recorded in 1:1(v/v)
CH3OH: H2O showed two absorption peaks with λmax val-
ues at 300 nm and 346 nm. Figure 4 displays the changes in
the absorption spectra of L on increasing the concentration
of Pb2+ ions (0.49 μM to 4.3 μM) in the solution. While no
changes in the absorption spectra were recorded on addition
of the other metal ions to L, it was revealed that titration
with Pb2+ ions resulted in a remarkable change. Addition of
Pb2+ ions resulted in an increase in the absorbance of the
peak at 300 nm and a decrease in the absorbance of the peak
at 346 nm. Inception of a new absorption peak was observed
at 650 nm with the addition of Pb2+ ion. This new absorp-
tion peak should be responsible for the high fluorescene of
L: Pb2+ adduct excited by 410 nm photon. In order to further
confirm the number of Pb2+ ions bound to L and the binding
constant, log [(Ao-As)/(As-Amax)] value was plotted against
log[Pb2+] from the absorption titration studies (Fig. 4). Here,
Ao, As and Amax are the absorbances of L at zero, at an
intermediate and at saturated concentration of Pb2+ ion
respectively. A least square fitting of the data (R2=0.9976)
yielded the slope as 1.006 confirming 1:1 binding between
L and Pb2+. The binding constant log β was calculated to be
7.45 which is close to the value calculated from the fluores-
cence data.

We also tested whether interaction between L and Pb2+

was effected by other metal ions such as Na+, K+, Ca2+,
Cu2+, Ni2+, Zn2+, Cd2+ and Hg2+ or not. For this purpose
1 μM solution of L already having 10 μM Pb2+ ion was
prepared and fluorescene intensity recorded. A particular
metal ion was added so that its concentration becomes
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Fig. 1 Fluorescence emission spectra of L when 0, 0.49, 0.99, 1.47,
1.96, 2.43, 2.91, 3.38, 3.84 and 4.3×10-6M Pb2+ ion was present in
1:1(v/v) CH3OH:H2O. (λex=410 nm; λemi=450 – 600 nm; Inset: plot
of I/Io as a function of Pb2+ ion concentration)

Fig. 3 Plot of log[(Io–Is)/(Is–Imax)] versus log[Pb
2+] for titration of L

against Pb2+ in 1:1(v/v) CH3OH: H2O. The plot shows a slope of 1.082
(R2=0.9864) indicating binding of one Pb2+ ion to L with log β=7.86

Fig. 2 Bar diagram showing effect of 1 equivalent of different metal
ions (4.3×10−6M) on the fluorescent intensity of L, in 1:1(v/v)
CH3OH: H2O
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10 μM and fluorescence intensity recorded. It was found
that the fluorescence intensity of L+Pb2+ ion system was
effected only to a very small extent by other metal ions. The
result has been summarised by a bar diagram of fluores-
cence intensity ratio of L+Pb2+ ion to L+Pb2+ in presence
of other metal ions (Fig. 5). This confirms that binding
between L and Pb2+ ion is much stronger than the interac-
tion between L and other metal ions.

The remarkable change in the fluorescent signal trans-
duction of L on interaction with Pb2+ may be explained on
the basis of the disruption of efficient photoinduced electron
transfer (PET) mechanism prevailing in L [38]. In L, the
PET process occurs due to the transfer of electron density,
originating at the lone pairs of electrons on N atoms of the
phenylhydrazine group to the LUMO of the fluorophore part
(salicylaldehyde). This results in quenching of the fluores-
cence intensity of L. Both from the fluorescence and

UV/Visible spectral titrations, it is evident that one Pb2+

ion binds to L, likely through the two N-atoms present in
the phenylhydrazine moiety. Thus interaction of Pb2+ ion
with L disrupts the PET process and results the enhance-
ment in fluorescence intensity.

In PET process, the driving force (ΔGet) from the recep-
tor group to the excited fluorophore is expressed by the
modified Weller [39] equation as follows,ΔGet ¼ �Es �
Ered:fluor þ Eox:receptor; where Es, Ered.fluor and Eox.receptor de-
note the singlet energy, reduction potential of the fluoro-
phore and the oxidation potential of the receptor
respectively. The cyclic voltammetric response of L (10−5

M) in 1:1(v/v) CH3OH: H2O was investigated by utilizing a
platinum disc as the working electrode and Ag/AgCl as the
reference electrode. A reversible redox couple was obtained
which displayed the reduction peak potential value at
−0.020 V and the oxidation peak at +0.3365 V. However,
in the presence of different concentration of Pb2+ ion
(0.49 μM to 4.3 μM), it was observed that at the final added
concentration, the reduction peak value shifted to −0.176 V
and the oxidation peak shifted to +0.044 V towards the
negative direction (Fig. 6). Thus, from the modified Weller
equation, it is evident that the binding of Pb2+ ion to L
increases the ΔGet value, consequently leading to the ces-
sation of the PET process. No change in the cyclic voltam-
mogram of L was observed when metal ions - Na+, K+,
Ca2+, Cu2+, Ni2+, Zn2+, Cd2+ and Hg2+ were added into the
electrolytic medium alone or together. From this electro-
chemical data, the selective interaction between L and
Pb2+ could be further confirmed.

The selectivity of L for Pb2+ over Na+, K+, Ca2+, Cu2+,
Ni2+, Zn2+, Cd2+ and Hg2+ is particularly important because
Pb2+ targets both Ca2+- and Zn2+-binding sites in vivo [40, 41]
and Cd2+, Hg2+ and Cu2+ are metal ions that frequently inter-
fere with Pb2+ ion detection. To summarize, we have presented
an efficient yet simple probe derived from the condensation of

Fig. 4 Change in the UV/visible spectra of L when the concentration
of Pb2 + ion was varied from 0 to 4.3×10−6M. Inset: Plot of log [(Ao−
As)/(As−A∞)] as a function of Pb2+ ion concentration. The plot shows
a slope of 1.006 (R2=0.9976) indicating binding of one Pb2+ ion to L
with log β=7.45

Fig. 5 Fluorescent response of L (1 μM) containing 10 μM Pb2+ to
the selected 10 μM metal ions Mn+ (Na+, K+, Ca2+, Cu2+, Ni+, Zn2+,
Cd2+ and Hg2+) in 1:1(v/v) CH3OH: H2O. The excitation wavelength,
λex was set at 410 nm

Fig. 6 Cyclic voltammetric response of (a) 1 μM solution of L in
1:1(v/v) CH3OH: H2O; and (b) 1 μM solution of L in presence of
4.3 μM Pb2+ in 1:1 (v/v) CH3OH: H2O
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phenylhydrazine and salicylaldehyde, which displayed a high
selectivity for Pb2+ ion in 1:1 (v:v) CH3OH:H2O at excitation
wavelength 410 nm. This excitation wavelength is much
higher than the UV/Visible absorption peaks of the probe.
The interaction between the probe and Pb2+ ion results the
high fluorescence intensity. The presence of the other metal
ions in the solution does not offer any hindrance to the en-
hancement in the fluorescence intensity. The remarkable in-
crease in the fluorescence intensity of ca 100 times on
interaction with Pb2+ was accompanied by a blue shift in the
emission spectra. A 1:1 complexation between L and Pb2+ ion
is proved to be formed which snaps the PET process in L
leading to fluorescent enhancement.
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